Discovering Imperfectly Observable Adversarial Actions Using Anomaly Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00347510" target="_blank" >RIV/68407700:21230/20:00347510 - isvavai.cz</a>
Result on the web
<a href="https://arxiv.org/ftp/arxiv/papers/2004/2004.10638.pdf" target="_blank" >https://arxiv.org/ftp/arxiv/papers/2004/2004.10638.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Discovering Imperfectly Observable Adversarial Actions Using Anomaly Detection
Original language description
Defenders in security problems often use anomaly detection (AD) to examine effects of (adversarial) actions and detect malicious behavior. Attackers seek to accomplish their goal (e.g., exfiltrate data) while avoiding the detection. Game theory can be used to reason about this interaction. While AD has been used in game-theoretic frameworks before, we extend the existing works to more realistic settings by (1) allowing players to have continuous action spaces and (2) assuming that the defender cannot perfectly observe the action of the attacker. We solve our model by (1) extending existing algorithms that discretize the action spaces and use linear programming and (2) by training a neural network using an algorithm based on exploitability descent, termed EDA. While both algorithms are applicable for low feature-space dimensions, EDA produces less exploitable strategies and scales to higher dimensions. In a data exfiltration scenario, EDA outperforms a range of classifiers when facing a targeted exploitative attacker.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 19th International Conference on Autonomous Agents and Multi-Agent Systems
ISBN
978-1-4503-7518-4
ISSN
1548-8403
e-ISSN
—
Number of pages
3
Pages from-to
1969-1971
Publisher name
IFAAMAS
Place of publication
County of Richland
Event location
Auckland
Event date
May 9, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—