All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ballroom Dance Recognition from Audio Recordings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00345502" target="_blank" >RIV/68407700:21230/21:00345502 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ICPR48806.2021.9412255" target="_blank" >https://doi.org/10.1109/ICPR48806.2021.9412255</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICPR48806.2021.9412255" target="_blank" >10.1109/ICPR48806.2021.9412255</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ballroom Dance Recognition from Audio Recordings

  • Original language description

    We propose a CNN-based approach to classify ten genres of ballroom dances given audio recordings, five latin and five standard, namely Cha Cha Cha, Jive, Paso Doble, Rumba, Samba, Quickstep, Slow Foxtrot, SlowWaltz, Tango and Viennese Waltz. We utilize a spectrogram of an audio signal and we treat it as an image that is an input of the CNN. The classification is performed independently by 5-seconds spectrogram segments in sliding window fashion and the results are then aggregated. The method was tested on following datasets: Publicly available Extended Ballroom dataset collected by Marchand and Peeters, 2016 and two YouTube datasets collected by us, one in studio quality and the other, more challenging, recorded on mobile phones. The method achieved accuracy 93.9%, 96.7% and 89.8% respectively. The method runs in real-time. We implemented a web application to demonstrate the proposed method.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2020 25th International Conference on Pattern Recognition (ICPR)

  • ISBN

    978-1-7281-8808-9

  • ISSN

    1051-4651

  • e-ISSN

    1051-4651

  • Number of pages

    8

  • Pages from-to

    2142-2149

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Los Alamitos

  • Event location

    Milan

  • Event date

    Jan 10, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000678409202033