Fairness in Forecasting and Learning Linear Dynamical Systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00347618" target="_blank" >RIV/68407700:21230/21:00347618 - isvavai.cz</a>
Result on the web
<a href="https://arxiv.org/abs/2006.07315" target="_blank" >https://arxiv.org/abs/2006.07315</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Fairness in Forecasting and Learning Linear Dynamical Systems
Original language description
In machine learning, training data often capture the behaviour of multiple subgroups of some underlying human population. When the amounts of training data for the subgroups are not controlled carefully, under-representation bias arises. We introduce two natural notions of subgroup fairness and instantaneous fairness to address such under-representation bias in time-series forecasting problems. In particular, we consider the subgroup-fair and instant-fair learning of a linear dynamical system (LDS) from multiple trajectories of varying lengths, and the associated forecasting problems. We provide globally convergent methods for the learning problems using hierarchies of convexifications of non-commutative polynomial optimisation problems. Our empirical results on a biased data set motivated by insurance applications and the well-known COMPAS data set demonstrate both the beneficial impact of fairness considerations on statistical performance and encouraging effects of exploiting sparsity on run time.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-866-4
ISSN
—
e-ISSN
2374-3468
Number of pages
9
Pages from-to
11134-11142
Publisher name
Association for the Advancement of Artificial Intelligence (AAAI)
Place of publication
Palo Alto, California
Event location
Virtual Conference
Event date
Feb 2, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000681269802093