All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optical Fiber Delay Lines in Microwave Photonics: Sensitivity to Temperature and Means to Reduce it

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00349101" target="_blank" >RIV/68407700:21230/21:00349101 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/JLT.2021.3052609" target="_blank" >https://doi.org/10.1109/JLT.2021.3052609</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JLT.2021.3052609" target="_blank" >10.1109/JLT.2021.3052609</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optical Fiber Delay Lines in Microwave Photonics: Sensitivity to Temperature and Means to Reduce it

  • Original language description

    One of the key functionalities in microwave photonics is to be able to define controllable time delays during the signal processing. Optical fibers are often used to achieve this functionality, especially when a long delay or a widely-tunable delay is needed. However, the stability of this delay in the presence of environmental changes (e.g., temperature) has not, to the best of our knowledge, been reviewed yet. Here, we firstly discuss the impact of temperature-induced variations on the signal propagation time in optical fibers and its implications in microwave photonics. We compare the impact of the thermal sensitivity of various delay lines for applications in which the signal is transported from point A to point B, as well as for applications in which the propagation time through a fiber or the fiber dispersion is used to create a fixed or tunable delay. In the second part of the article we show the impact of fiber thermal sensitivity on a narrow-band microwave photonics filter made of standard single mode fiber (SSMF) and a hollow core fiber (HCF), which has significantly lower thermal sensitivity of propagation time to temperature. The central frequency of the band-pass filter changes almost 16 times more in the filter made of SSMF as compared to that of HCF, dictating very tight (0.05 °C) temperature stabilization for SSMF-based filters. On the basis of our thermal sensitivity analysis we conclude that HCFs are very promising for environmentally stable microwave photonics applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/LTC18008" target="_blank" >LTC18008: Transmission of Millimeter Waves over Fiber and Free-space Optical Infrastructures (TraFFIc)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE/OSA Journal of Lightwave Technology

  • ISSN

    0733-8724

  • e-ISSN

    1558-2213

  • Volume of the periodical

    39

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    2311-2318

  • UT code for WoS article

    000633442200007

  • EID of the result in the Scopus database

    2-s2.0-85099724370