All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Low loss and high performance interconnection between standard single-mode fiber and antiresonant hollow-core fiber

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00349857" target="_blank" >RIV/68407700:21230/21:00349857 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1038/s41598-021-88065-2" target="_blank" >https://doi.org/10.1038/s41598-021-88065-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-021-88065-2" target="_blank" >10.1038/s41598-021-88065-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Low loss and high performance interconnection between standard single-mode fiber and antiresonant hollow-core fiber

  • Original language description

    We demonstrate halving the record-low loss of interconnection between a nested antiresonant nodeless type hollow-core fiber (NANF) and standard single-mode fiber (SMF). The achieved interconnection loss of 0.15 dB is only 0.07 dB above the theoretically-expected minimum loss. We also optimized the interconnection in terms of unwanted cross-coupling into the higher-order modes of the NANF. We achieved cross-coupling as low as -35 dB into the LP11 mode (the lowest-loss higher-order mode and thus the most important to eliminate). With the help of simulations, we show that the measured LP11 mode coupling is most likely limited by the slightly imperfect symmetry of the manufactured NANF. The coupling cross-talk into the highly-lossy LP02 mode (>2000 dB/km in our fiber) was measured to be below -22 dB. Furthermore, we show experimentally that the anti-reflective coating applied to the interconnect interface reduces the insertion loss by 0.15 dB while simultaneously reducing the back-reflection below -40 dB over a 60 nm bandwidth. Finally, we also demonstrated an alternative mode-field adapter to adapt the mode-field size between SMF and NANF, based on thermally-expanded core fibers. This approach enabled us to achieve an interconnection loss of 0.21 dB and cross-coupling of -35 dB into the LP11 mode.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

    2045-2322

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000642742500005

  • EID of the result in the Scopus database

    2-s2.0-85104805593