Custom-Design of FDR Encodings: The Case of Red-Black Planning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350204" target="_blank" >RIV/68407700:21230/21:00350204 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.24963/ijcai.2021/558" target="_blank" >https://doi.org/10.24963/ijcai.2021/558</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2021/558" target="_blank" >10.24963/ijcai.2021/558</a>
Alternative languages
Result language
angličtina
Original language name
Custom-Design of FDR Encodings: The Case of Red-Black Planning
Original language description
Classical planning tasks are commonly described in PDDL, while most planning systems operate on a grounded finite-domain representation (FDR). The translation of PDDL into FDR is complex and has a lot of choice points---it involves identifying so called mutex groups---but most systems rely on the translator that comes with Fast Downward. Yet the translation choice points can strongly impact performance. Prior work has considered optimizing FDR encodings in terms of the number of variables produced. Here we go one step further by proposing to custom-design FDR encodings, optimizing the encoding to suit particular planning techniques. We develop such a custom design here for red-black planning, a partial delete relaxation technique. The FDR encoding affects the causal graph and the domain transition graph structures, which govern the tractable fragment of red-black planning and hence affects the respective heuristic function. We develop integer linear programming techniques optimizing the scope of that fragment in the resulting FDR encoding. We empirically show that the performance of red-black planning can be improved through such FDR custom design.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
ISBN
978-0-9992411-9-6
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
4054-4061
Publisher name
International Joint Conferences on Artificial Intelligence Organization
Place of publication
—
Event location
Montreal
Event date
Aug 19, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—