Saliency Driven Perceptual Image Compression
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350832" target="_blank" >RIV/68407700:21230/21:00350832 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/WACV48630.2021.00027" target="_blank" >https://doi.org/10.1109/WACV48630.2021.00027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV48630.2021.00027" target="_blank" >10.1109/WACV48630.2021.00027</a>
Alternative languages
Result language
angličtina
Original language name
Saliency Driven Perceptual Image Compression
Original language description
This paper proposes a new end-to-end trainable model for lossy image compression, which includes several novel components. The method incorporates 1) an adequate perceptual similarity metric; 2) saliency in the images; 3) a hierarchical auto-regressive model. This paper demonstrates that the popularly used evaluations metrics such as MS-SSIM and PSNR are inadequate for judging the performance of image compression techniques as they do not align with the human perception of similarity. Alternatively, a new metric is proposed, which is learned on perceptual similarity data specific to image compression. The proposed compression model incorporates the salient regions and optimizes on the proposed perceptual similarity metric. The model not only generates images which are visually better but also gives superior performance for subsequent computer vision tasks such as object detection and segmentation when compared to existing engineered or learned compression techniques.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2021 IEEE Winter Conference on Applications of Computer Vision (WACV)
ISBN
978-0-7381-4266-1
ISSN
2472-6737
e-ISSN
2642-9381
Number of pages
10
Pages from-to
227-236
Publisher name
Institute of Electrical and Electronics Engineers
Place of publication
New York
Event location
Waikoloa, HI
Event date
Jan 5, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000692171000023