All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tensor Decomposition-Based Training Method for High-Order Hidden Markov Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354899" target="_blank" >RIV/68407700:21230/21:00354899 - isvavai.cz</a>

  • Result on the web

    <a href="http://ceur-ws.org/Vol-2962/paper28.pdf" target="_blank" >http://ceur-ws.org/Vol-2962/paper28.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tensor Decomposition-Based Training Method for High-Order Hidden Markov Models

  • Original language description

    Hidden Markov models (HMMs) are one of the most widely used unsupervised-learning algorithms for modeling discrete sequential data. Traditionally, most of the applications of HMMs have utilized only models of order 1 because higher-order models are computationally hard to train. We reformulate HMMs using tensor decomposition to efficiently build higher-order models with the use of stochastic gradient descent. Based on this, we propose a new modified version of a training algorithm for HMMs, especially suitable for high-order HMMs. Further, we show its capabilities and convergence on synthetic data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 21st Conference Information Technologies – Applications and Theory (ITAT 2021)

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

    1613-0073

  • Number of pages

    7

  • Pages from-to

    39-45

  • Publisher name

    CEUR Workshop Proceedings

  • Place of publication

    Aachen

  • Event location

    Heľpa

  • Event date

    Sep 24, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article