All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A NEW COARSELY RIGID CLASS OF BANACH SPACES

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00355109" target="_blank" >RIV/68407700:21230/21:00355109 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1017/S1474748019000732" target="_blank" >https://doi.org/10.1017/S1474748019000732</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S1474748019000732" target="_blank" >10.1017/S1474748019000732</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A NEW COARSELY RIGID CLASS OF BANACH SPACES

  • Original language description

    We prove that the class of reflexive asymptotic-c(0) Banach spaces is coarsely rigid, meaning that if a Banach space X coarsely embeds into a reflexive asymptotic-c(0) space Y, then X is also reflexive and asymptotic-c(0). In order to achieve this result, we provide a purely metric characterization of this class of Banach spaces. This metric characterization takes the form of a concentration inequality for Lipschitz maps on the Hamming graphs, which is rigid under coarse embeddings. Using an example of a quasi-reflexive asymptotic-c(0) space, we show that this concentration inequality is not equivalent to the non-equi-coarse embeddability of the Hamming graphs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the Institute of Mathematics of Jussieu

  • ISSN

    1474-7480

  • e-ISSN

    1475-3030

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    19

  • Pages from-to

    1729-1747

  • UT code for WoS article

    000695227600011

  • EID of the result in the Scopus database

    2-s2.0-85078041091