Dominant subject recognition by Bayesian learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00355205" target="_blank" >RIV/68407700:21230/21:00355205 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/FG52635.2021.9666979" target="_blank" >https://doi.org/10.1109/FG52635.2021.9666979</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/FG52635.2021.9666979" target="_blank" >10.1109/FG52635.2021.9666979</a>
Alternative languages
Result language
angličtina
Original language name
Dominant subject recognition by Bayesian learning
Original language description
We tackle the problem of dominant subject recognition (DSR), which aims at identifying the faces of the subject whose faces appear most frequently in a given collection of images. We propose a simple algorithm solving the DSR problem in a principled way via Bayesian learning. The proposed algorithm has complexity quadratic in the number of detected faces, and it provides labeling of images along with an accurate estimate of the prediction confidence. The prediction confidence permits using the algorithm in semiautomatic mode when only a subset of images with uncertain labels are corrected manually. We demonstrate on a challenging IJB-B database, that the algorithm significantly reduces the number of images that need to be manually annotated to get the perfect performance of face verification and face identification systems using the face database created by the method.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proc. of the 16th IEEE International Conference on Automatic Face and Gesture Recognition, 2021 (FG 2021)
ISBN
978-1-6654-3176-7
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
—
Publisher name
IEEE Computer Society Press
Place of publication
Los Alamitos
Event location
Jodhpur
Event date
Dec 15, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—