Experimental Leg Inverse Dynamics Learning of Multi-legged Walking Robot
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00355325" target="_blank" >RIV/68407700:21230/21:00355325 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-70740-8_10" target="_blank" >https://doi.org/10.1007/978-3-030-70740-8_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-70740-8_10" target="_blank" >10.1007/978-3-030-70740-8_10</a>
Alternative languages
Result language
angličtina
Original language name
Experimental Leg Inverse Dynamics Learning of Multi-legged Walking Robot
Original language description
Rough terrain locomotion is a domain where multi-legged robots benefit from their relatively complex morphology compared to the wheeled or tracked robots. Efficient rough terrain locomotion requires the legged robot sense contacts with the terrain to adapt its behavior and cope with the terrain irregularities. Usage of inverse dynamics to estimate the leg state and detect the leg contacts with the terrain suffers from computational complexity. Furthermore, it requires a precise analytical model identification that does not cope with adverse changes of the leg parameters such as friction changes due to the joint wear, the increased weight of the leg due to the mud deposits, and possible leg morphology change due to damage. In this paper, we report the experimental study on the locomotion performance with machine learning-based inverse dynamics model learning. Experimental examining three different learning models show that a simplified model is sufficient for leg collision detection learning. Moreover, the learned model is faster for calculation and generalizes better than more complex models when the leg parameters change.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Modelling and Simulation for Autonomous Systems
ISBN
978-3-030-70739-2
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
15
Pages from-to
154-168
Publisher name
Springer
Place of publication
Cham
Event location
Praha
Event date
Oct 21, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000763018100010