All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Galois/monodromy groups in 3D reconstruction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00356034" target="_blank" >RIV/68407700:21230/21:00356034 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/21:00356034

  • Result on the web

    <a href="https://meetings.ams.org/math/jmm2021/meetingapp.cgi/Paper/2557" target="_blank" >https://meetings.ams.org/math/jmm2021/meetingapp.cgi/Paper/2557</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Galois/monodromy groups in 3D reconstruction

  • Original language description

    In computer vision, the study of minimal problems is critical for many 3D reconstruction tasks. Solving minimal problems comes down to solving systems of polynomial equations of a very particular structure. ``Structure" of minimal problems may be understood in terms of the Galois/monodromy group of an associated branched cover. We compute these groups for many examples using numerical homotopy continuation methods. Classical problems such as five-point relative pose, planar calibrated homography estimation, and perspective absolute pose give rise to imprimitive Galois groups, and solutions to these problems typically exploit a corresponding decomposition of the associated branched cover. Beside analyzing these cases, we find also several novel minimal problems whose Galois groups are imprimitive and may be reasonable to solve in practical applications.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů