All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Monocular Teach-and-Repeat Navigation using a Deep Steering Network with Scale Estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00357705" target="_blank" >RIV/68407700:21230/21:00357705 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/IROS51168.2021.9635912" target="_blank" >https://doi.org/10.1109/IROS51168.2021.9635912</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IROS51168.2021.9635912" target="_blank" >10.1109/IROS51168.2021.9635912</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Monocular Teach-and-Repeat Navigation using a Deep Steering Network with Scale Estimation

  • Original language description

    This paper proposes a novel monocular teach-and-repeat navigation system with the capability of scale awareness, i.e. the absolute distance between observation and goal images. It decomposes the navigation task into a sequence of visual servoing sub-tasks to approach consecutive goal/node images in a topological map. To be specific, a novel hybrid model, named deep steering network is proposed to infer the navigation primitives according to the learned local feature and scale for each visual servoing sub-task. A novel architecture, Scale-Transformer, is developed to estimate the absolute scale between the observation and goal image pair from a set of matched deep representations to assist repeating navigation. The experiments demonstrate that our scale-aware teach-and-repeat method achieves satisfying navigation accuracy, and converges faster than the monocular methods without scale correction given an inaccurate initial pose.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GC20-27034J" target="_blank" >GC20-27034J: Towards long-term autonomy through introduction of the temporal domain into spatial representations used in robotics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

  • ISBN

    978-1-6654-1714-3

  • ISSN

    2153-0858

  • e-ISSN

    2153-0866

  • Number of pages

    7

  • Pages from-to

    2613-2619

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Praha

  • Event date

    Sep 27, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000755125502022