Automatic Conjecturing of P-Recursions Using Lifted Inference
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00357751" target="_blank" >RIV/68407700:21230/22:00357751 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-97454-1_2" target="_blank" >https://doi.org/10.1007/978-3-030-97454-1_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-97454-1_2" target="_blank" >10.1007/978-3-030-97454-1_2</a>
Alternative languages
Result language
angličtina
Original language name
Automatic Conjecturing of P-Recursions Using Lifted Inference
Original language description
Recent progress in lifted inference algorithms has made it possible to solve many non-trivial counting tasks from enumerative combinatorics in an automated fashion, by casting them as first-order model counting problems. Algorithms for this problem typically output a single number, which is the number of models of the first-order logic sentence in question on a given domain. However, in the combinatorics setting, we are more interested in obtaining a mathematical formula that holds for any given structure size. In this paper, we show that one can use lifted inference algorithms to conjecture linear recurrences with polynomial coefficients, one such class of formulas of interest.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Inductive Logic Programming
ISBN
978-3-030-97453-4
ISSN
0302-9743
e-ISSN
0302-9743
Number of pages
9
Pages from-to
17-25
Publisher name
Springer Science and Business Media Deutschland GmbH
Place of publication
—
Event location
Virtual - Online
Event date
Oct 25, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000773028200002