All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Self-Supervised Robust Feature Matching Pipeline for Teach and Repeat Navigation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00357967" target="_blank" >RIV/68407700:21230/22:00357967 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/s22082836" target="_blank" >https://doi.org/10.3390/s22082836</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s22082836" target="_blank" >10.3390/s22082836</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Self-Supervised Robust Feature Matching Pipeline for Teach and Repeat Navigation

  • Original language description

    The performance of deep neural networks and the low costs of computational hardware has made computer vision a popular choice in many robotic systems. An attractive feature of deep-learned methods is their ability to cope with appearance changes caused by day-night cycles and seasonal variations. However, deep learning of neural networks typically relies on large numbers of hand-annotated images, which requires significant effort for data collection and annotation. We present a method that allows autonomous, self-supervised training of a neural network in visual teach-and-repeat (VT&R) tasks, where a mobile robot has to traverse a previously taught path repeatedly. Our method is based on a fusion of two image registration schemes: one based on a Siamese neural network and another on point-feature matching. As the robot traverses the taught paths, it uses the results of feature-based matching to train the neural network, which, in turn, provides coarse registration estimates to the feature matcher. We show that as the neural network gets trained, the accuracy and robustness of the navigation increases, making the robot capable of dealing with significant changes in the environment. This method can significantly reduce the data annotation efforts when designing new robotic systems or introducing robots into new environments. Moreover, the method provides annotated datasets that can be deployed in other navigation systems. To promote the reproducibility of the research presented herein, we provide our datasets, codes and trained models online.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Sensors

  • ISSN

    1424-8220

  • e-ISSN

    1424-8220

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    17

  • Pages from-to

  • UT code for WoS article

    000785509200001

  • EID of the result in the Scopus database

    2-s2.0-85127712176