Detecting Early Signs of Depression in the Conversational Domain: The Role of Transfer Learning in Low-Resource Scenarios
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359317" target="_blank" >RIV/68407700:21230/22:00359317 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/22:00359317
Result on the web
<a href="https://doi.org/10.1007/978-3-031-08473-7_33" target="_blank" >https://doi.org/10.1007/978-3-031-08473-7_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-08473-7_33" target="_blank" >10.1007/978-3-031-08473-7_33</a>
Alternative languages
Result language
angličtina
Original language name
Detecting Early Signs of Depression in the Conversational Domain: The Role of Transfer Learning in Low-Resource Scenarios
Original language description
The high prevalence of depression in society has given rise to the need for new digital tools to assist in its early detection. To this end, existing research has mainly focused on detecting depression in the domain of social media, where there is a sufficient amount of data. However, with the rise of conversational agents like Siri or Alexa, the conversational domain is becoming more critical. Unfortunately, there is a lack of data in the conversational domain. We perform a study focusing on domain adaptation from social media to the conversational domain. Our approach mainly exploits the linguistic information preserved in the vector representation of text. We describe transfer learning techniques to classify users who suffer from early signs of depression with high recall. We achieve state-of-the-art results on a commonly used conversational dataset, and we highlight how the method can easily be used in conversational agents. We publicly release all source code.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Natural Language Processing and Information Systems
ISBN
978-3-031-08472-0
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
358-369
Publisher name
Springer, Cham
Place of publication
—
Event location
Valencia
Event date
Jun 15, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000870296500033