All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Traveling Salesman Problem with neighborhoods on a sphere in reflectance transformation imaging scenarios

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359349" target="_blank" >RIV/68407700:21230/22:00359349 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.eswa.2022.116814" target="_blank" >https://doi.org/10.1016/j.eswa.2022.116814</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2022.116814" target="_blank" >10.1016/j.eswa.2022.116814</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Traveling Salesman Problem with neighborhoods on a sphere in reflectance transformation imaging scenarios

  • Original language description

    In this paper, we propose a solution to the non-Euclidean variant of the Traveling Salesman Problem with Neighborhoods on a Sphere (TSPNS). The introduced problem formulation is motivated by practical scenarios of employing unmanned aerial vehicles in the Reflectance Transformation Imaging (RTI). In the RTI, a vehicle is requested to visit a set of sites at a constant distance from the object of interest and cast light from different directions to model the object from the images captured from another fixed location. Even though the problem can be formulated as an instance of the regular traveling salesman problem, we report a significant reduction of the solution cost by exploiting a non-zero tolerance on the light direction and defining the sites as regions on a sphere. The continuous neighborhoods of the TSPNS can be sampled into discrete sets, and the problem can be transformed into the generalized traveling salesman problem. However, finding high-quality solutions requires dense sampling, which increases the computational requirements. Therefore, we propose a practical heuristic solution based on the unsupervised learning of the Growing Self-Organizing Array (GSOA) that quickly finds an initial solution with the competitive quality to the sampling-based method. Furthermore, we propose a fast post-processing optimization to improve the initial solutions of both solvers. Based on the reported results, the proposed GSOA-based solver provides solutions of a similar quality to the transformation approach while it is about two orders of magnitude less computationally demanding.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Expert Systems with Applications

  • ISSN

    0957-4174

  • e-ISSN

    1873-6793

  • Volume of the periodical

    198

  • Issue of the periodical within the volume

    116814

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000792918500001

  • EID of the result in the Scopus database

    2-s2.0-85127006924