Smart home energy management processes support through machine learning algorithms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359531" target="_blank" >RIV/68407700:21230/22:00359531 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.egyr.2022.01.033" target="_blank" >https://doi.org/10.1016/j.egyr.2022.01.033</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.egyr.2022.01.033" target="_blank" >10.1016/j.egyr.2022.01.033</a>
Alternative languages
Result language
angličtina
Original language name
Smart home energy management processes support through machine learning algorithms
Original language description
Smart Home Energy Management Systems can manifest energy consumption reduction targets in the residential sector and can be viewed as an approach to transform the consumer into an active prosumer. The present paper presents a smart home energy management system that includes flexible appliances, electric vehicles, and energy storage units. Efficient forecasting algorithms support the robust operation of the smart home energy management system. Specifically, the smart home energy management system receives as inputs forecasts of demand, renewable energy sources including photovoltaics and Wind Turbine generations, and real-time prices. In order to minimize energy costs, a variety of algorithms is compared to provide highly accurate forecasts. (C) 2022 The Author(s). Published by Elsevier Ltd.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Energy Reports
ISSN
2352-4847
e-ISSN
2352-4847
Volume of the periodical
8
Issue of the periodical within the volume
June
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
1-6
UT code for WoS article
000770811000001
EID of the result in the Scopus database
2-s2.0-85123356876