Spectral order isomorphisms and AW*-factors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359538" target="_blank" >RIV/68407700:21230/22:00359538 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/mana.202000043" target="_blank" >https://doi.org/10.1002/mana.202000043</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202000043" target="_blank" >10.1002/mana.202000043</a>
Alternative languages
Result language
angličtina
Original language name
Spectral order isomorphisms and AW*-factors
Original language description
The paper deals with spectral order isomorphisms in the framework of AW*-algebras. We establish that every spectral order isomorphism between sets of all self-adjoint elements (or between sets of all effects, or between sets of all positive elements) in AW*-factors of Type I has a canonical form induced by a continuous function calculus and an isomorphism between projection lattices. In particular, this solves an open question about spectral order automorphisms of the set of all (bounded) self-adjoint operators on an infinite-dimensional Hilbert space. We also discuss spectral order isomorphisms preserving, in addition, orthogonality in both directions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
295
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
6-21
UT code for WoS article
000738301200001
EID of the result in the Scopus database
2-s2.0-85122253265