MeshLoc: Mesh-Based Visual Localization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00360761" target="_blank" >RIV/68407700:21230/22:00360761 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/22:00360761
Result on the web
<a href="https://doi.org/10.1007/978-3-031-20047-2_34" target="_blank" >https://doi.org/10.1007/978-3-031-20047-2_34</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-20047-2_34" target="_blank" >10.1007/978-3-031-20047-2_34</a>
Alternative languages
Result language
angličtina
Original language name
MeshLoc: Mesh-Based Visual Localization
Original language description
Visual localization, i.e., the problem of camera pose estimation, is a central component of applications such as autonomous robots and augmented reality systems. A dominant approach in the literature, shown to scale to large scenes and to handle complex illumination and seasonal changes, is based on local features extracted from images. The scene representation is a sparse Structure-from-Motion point cloud that is tied to a specific local feature. Switching to another feature type requires an expensive feature matching step between the database images used to construct the point cloud. In this work, we thus explore a more flexible alternative based on dense 3D meshes that does not require features matching between database images to build the scene representation. We show that this approach can achieve state-of-the-art results. We further show that surprisingly competitive results can be obtained when extracting features on renderings of these meshes, without any neural rendering stage, and even when rendering raw scene geometry without color or texture. Our results show that dense 3D model-based representations are a promising alternative to existing representations and point to interesting and challenging directions for future research.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computer Vision - ECCV 2022, Part XXII
ISBN
978-3-031-20046-5
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
21
Pages from-to
589-609
Publisher name
Springer, Cham
Place of publication
—
Event location
Tel Aviv
Event date
Oct 23, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000904116000034