Bootstrapped Learning for Car Detection in Planar Lidars
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00361168" target="_blank" >RIV/68407700:21230/22:00361168 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1145/3477314.3507312" target="_blank" >https://doi.org/10.1145/3477314.3507312</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3477314.3507312" target="_blank" >10.1145/3477314.3507312</a>
Alternative languages
Result language
angličtina
Original language name
Bootstrapped Learning for Car Detection in Planar Lidars
Original language description
We present a proof-of-concept method for using bootstrapped learning for car detection in lidar scans using neural networks. We transfer knowledge from a traditional hand-engineered clustering and geometry-based detection technique to deep-learning-based methods. The geometry-based method automatically annotates laserscans from a vehicle travelling around a static car park over a long period of time. We use these annotations to automatically train the deep-learning neural network and evaluate and compare this method against the original geometrical method in various weather conditions. Furthermore, by using temporal filters, we can find situations where the original method was struggling or giving intermittent detections and still automatically annotate these frames and use them as part of the training process. Our evaluation indicates an increased detection accuracy and robustness as sensing conditions deteriorate compared to the method from which trained the neural network.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GC20-27034J" target="_blank" >GC20-27034J: Towards long-term autonomy through introduction of the temporal domain into spatial representations used in robotics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing
ISBN
978-1-4503-8713-2
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
758-765
Publisher name
ACM
Place of publication
New York
Event location
Virtual
Event date
Apr 25, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—