All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reducing the cost of fitting mixture models via stochastic sampling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00364108" target="_blank" >RIV/68407700:21230/22:00364108 - isvavai.cz</a>

  • Result on the web

    <a href="https://openreview.net/forum?id=WPWcn80R36y" target="_blank" >https://openreview.net/forum?id=WPWcn80R36y</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reducing the cost of fitting mixture models via stochastic sampling

  • Original language description

    Traditional methods for unsupervised learning of finite mixture models require to evaluate the likelihood of all components of the mixture. This quickly becomes prohibitive when the components are abundant or expensive to compute. Therefore, we propose to apply a combination of the expectation maximization and the Metropolis-Hastings algorithm to evaluate only a small number of, stochastically sampled, components, thus substantially reducing the computational cost. The Markov chain of component assignments is sequentially generated across the algorithm's iterations, having a non-stationary target distribution whose parameters vary via a gradient-descent scheme. We put emphasis on generality of our method, equipping it with the ability to train mixture models which involve complex, and possibly nonlinear, transformations. The performance of our method is illustrated on mixtures of normalizing flows.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-32620S" target="_blank" >GA22-32620S: Unsupervised learning from heterogenous structured data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů