All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Gait Adaptation After Leg Amputation of Hexapod Walking Robot Without Sensory Feedback

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00364540" target="_blank" >RIV/68407700:21230/22:00364540 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-15934-3_54" target="_blank" >https://doi.org/10.1007/978-3-031-15934-3_54</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-15934-3_54" target="_blank" >10.1007/978-3-031-15934-3_54</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Gait Adaptation After Leg Amputation of Hexapod Walking Robot Without Sensory Feedback

  • Original language description

    In this paper, we address the adaptation of the locomotion controller to change of the multi-legged walking robot morphology, such as leg amputation. In nature, the animal compensates for the amputation using its neural locomotion controller that we aim to reproduce with the Central Pattern Generator (CPG). The CPG is a rhythm-generating recurrent neural network used in gait controllers for the rhythmical locomotion of walking robots. The locomotion corresponds to the robot's morphology, and therefore, the locomotion rhythm must adapt if the robot's morphology is changed. The leg amputation can be handled by sensory feedback to compensate for the load distribution imbalances. However, the sensory feedback can be disrupted due to unexpected external events causing the leg to be damaged, thus leading to unexpected motion states. Therefore, we propose dynamic rules for learning a new gait rhythm without the sensory feedback input. The method has been experimentally validated on a real hexapod walking robot to demonstrate its usability for gait adaptation after amputation of one or two legs.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GC21-33041J" target="_blank" >GC21-33041J: Learning Complex Motion Planning Policies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2022

  • ISBN

    978-3-031-15933-6

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    656-667

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Bristol

  • Event date

    Sep 6, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000866212600053