Deep RRT
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00364779" target="_blank" >RIV/68407700:21230/22:00364779 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/22:00364779
Result on the web
<a href="https://doi.org/10.1609/socs.v15i1.21803" target="_blank" >https://doi.org/10.1609/socs.v15i1.21803</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/socs.v15i1.21803" target="_blank" >10.1609/socs.v15i1.21803</a>
Alternative languages
Result language
angličtina
Original language name
Deep RRT
Original language description
Sampling-based motion planning algorithms such as Rapidly exploring Random Trees (RRTs) have been used in robotic applications for a long time. In this paper, we propose a method that combines deep learning with RRT* method. We use a neural network to learn a sample strategy for RRT*.We evaluate Deep RRT* in a collection of 2D scenarios. The results demonstrate that our algorithm could find collision-free paths efficiently and fast, and can be generalized to unseen environments.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Fifteenth International Symposium on Combinatorial Search
ISBN
978-1-57735-873-2
ISSN
—
e-ISSN
—
Number of pages
3
Pages from-to
333-335
Publisher name
Association for the Advancement of Artificial Intelligence (AAAI)
Place of publication
Palo Alto, California
Event location
Vídeň
Event date
Jul 21, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—