All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sparsity Structures for Koopman and Perron-Frobenius Operators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00364895" target="_blank" >RIV/68407700:21230/22:00364895 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1137/21M1466608" target="_blank" >https://doi.org/10.1137/21M1466608</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/21M1466608" target="_blank" >10.1137/21M1466608</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sparsity Structures for Koopman and Perron-Frobenius Operators

  • Original language description

    We present a decomposition of the Koopman and Perron-Frobenius operator based on the sparse structure of the underlying dynamical system, allowing one to consider the system as a family of subsystems interconnected by a graph. Using the intrinsic properties of the Koopman operator, we show that eigenfunctions for the subsystems induce eigenfunctions for the whole system. The use of principal eigenfunctions allows us to reverse this result. Similarly for the adjoint operator, the Perron-Frobenius operator, invariant measures for the dynamical system induce invariant measures of the subsystems, while constructing invariant measures from invariant measures of the subsystems is less straightforward. We address this question and show that under necessary compatibility as-sumptions such an invariant measure exists. Based on these results we demonstrate that the a priori knowledge of a decomposition of a dynamical system allows for a reduction of the computational cost on the examples of the dynamic mode decomposition and invariant measure computation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GJ20-11626Y" target="_blank" >GJ20-11626Y: Koopman operator framework for control of complex nonlinear dynamical systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Siam Journal on Applied Dynamical Systems

  • ISSN

    1536-0040

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    28

  • Pages from-to

    2187-2214

  • UT code for WoS article

    000913566000007

  • EID of the result in the Scopus database

    2-s2.0-85138456903