All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A first principles study of structural and optoelectronic properties and photocatalytic performance of GeC-MX2 (M = Mo and W; X = S and Se) van der Waals heterostructures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00366127" target="_blank" >RIV/68407700:21230/23:00366127 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1039/d3cp00398a" target="_blank" >https://doi.org/10.1039/d3cp00398a</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d3cp00398a" target="_blank" >10.1039/d3cp00398a</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A first principles study of structural and optoelectronic properties and photocatalytic performance of GeC-MX2 (M = Mo and W; X = S and Se) van der Waals heterostructures

  • Original language description

    Two-dimensional (2D) materials have received enormous attention as photocatalysts for hydrogen production to address the worldwide energy crisis. In this study, we employed first-principles computations to systematically investigate the structural, opto-electronic, and photocatalytic properties of novel GeC-MX2 (M = Mo, W, X = S, Se) van der Waals (vdW) heterostructures for photocatalysis applications. Our results reveal that the GeC-MX2 heterostructures can absorb visible light. The type-II band alignment in GeC-MoS2 and GeC-WS2 enables the photogenerated electron-hole pairs to be separated continuously. The electron transfer from the GeC monolayer to MX2 monolayer leads to a large built-in electric field at the interface. This induced electric field is essential for preventing the recombination of photogenerated charges. Moreover, the band-edge locations suggest that GeC-MX2 heterostructures can be utilized as a photocatalyst for water splitting. Finally, the opto-electronic properties of these novel GeC-MX2 heterostructures facilitate their practical utilization in future photocatalysis applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/EF16_026%2F0008396" target="_blank" >EF16_026/0008396: Novel nanostructures for engineering applications enabled by emerging techniques supported by advanced simulations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Chemistry Chemical Physics

  • ISSN

    1463-9076

  • e-ISSN

    1463-9084

  • Volume of the periodical

    25

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    7

  • Pages from-to

    11169-11175

  • UT code for WoS article

    000969185700001

  • EID of the result in the Scopus database

    2-s2.0-85152671367