Ensemble approximations for constrained dynamical systems using Liouville equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00366128" target="_blank" >RIV/68407700:21230/23:00366128 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.automatica.2022.110836" target="_blank" >https://doi.org/10.1016/j.automatica.2022.110836</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.automatica.2022.110836" target="_blank" >10.1016/j.automatica.2022.110836</a>
Alternative languages
Result language
angličtina
Original language name
Ensemble approximations for constrained dynamical systems using Liouville equation
Original language description
For a class of state-constrained dynamical systems described by evolution variational inequalities, we study the time evolution of a probability measure which describes the distribution of the state over a set. In contrast to smooth ordinary differential equations, where the evolution of this probability measure is described by the Liouville equations, the flow map associated with the nonsmooth differential inclusion is not necessarily invertible and one cannot directly derive a continuity equation to describe the evolution of the distribution of states. Instead, we consider Lipschitz approximation of our original nonsmooth system and construct a sequence of measures obtained from Liouville equations corresponding to these approximations. This sequence of measures converges in weak -star topology to the measure describing the evolution of the distribution of states for the original nonsmooth system. This allows us to approximate numerically the evolution of moments (up to some finite order) for our original nonsmooth system, using a solver that uses finite order moment approximations of the Liouville equation. Our approach is illustrated with the help of two academic examples. (c) 2023 Elsevier Ltd. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Automatica
ISSN
0005-1098
e-ISSN
1873-2836
Volume of the periodical
149
Issue of the periodical within the volume
March
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
—
UT code for WoS article
000921598700001
EID of the result in the Scopus database
2-s2.0-85145654785