All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Large-Scale Homography Benchmark

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367030" target="_blank" >RIV/68407700:21230/23:00367030 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/23:00367030

  • Result on the web

    <a href="https://doi.org/10.1109/CVPR52729.2023.02046" target="_blank" >https://doi.org/10.1109/CVPR52729.2023.02046</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR52729.2023.02046" target="_blank" >10.1109/CVPR52729.2023.02046</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Large-Scale Homography Benchmark

  • Original language description

    We present a large-scale dataset of Planes in 3D, Pi3D, of roughly 1000 planes observed in 10 000 images from the 1DSfM dataset, and HEB, a large-scale homography estimation benchmark leveraging Pi3D. The applications of the Pi3D dataset are diverse, e.g. training or evaluating monocular depth, surface normal estimation and image matching algorithms. The HEB dataset consists of 226 260 homographies and includes roughly 4M correspondences. The homographies link images that often undergo significant viewpoint and illumination changes. As applications of HEB, we perform a rigorous evaluation of a wide range of robust estimators and deep learning-based correspondence filtering methods, establishing the current state-of- the-art in robust homography estimation. We also evalu- ate the uncertainty of the SIFT orientations and scales w.r.t. the ground truth coming from the underlying homographies and provide codes for comparing uncertainty of custom de- tectors. The dataset is available at https://github.com/danini/homography-benchmark.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  • ISBN

    979-8-3503-0129-8

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    11

  • Pages from-to

    21360-21370

  • Publisher name

    IEEE Computer Society

  • Place of publication

    USA

  • Event location

    Vancouver

  • Event date

    Jun 18, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001062531305067