A Large-Scale Homography Benchmark
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367030" target="_blank" >RIV/68407700:21230/23:00367030 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/23:00367030
Result on the web
<a href="https://doi.org/10.1109/CVPR52729.2023.02046" target="_blank" >https://doi.org/10.1109/CVPR52729.2023.02046</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR52729.2023.02046" target="_blank" >10.1109/CVPR52729.2023.02046</a>
Alternative languages
Result language
angličtina
Original language name
A Large-Scale Homography Benchmark
Original language description
We present a large-scale dataset of Planes in 3D, Pi3D, of roughly 1000 planes observed in 10 000 images from the 1DSfM dataset, and HEB, a large-scale homography estimation benchmark leveraging Pi3D. The applications of the Pi3D dataset are diverse, e.g. training or evaluating monocular depth, surface normal estimation and image matching algorithms. The HEB dataset consists of 226 260 homographies and includes roughly 4M correspondences. The homographies link images that often undergo significant viewpoint and illumination changes. As applications of HEB, we perform a rigorous evaluation of a wide range of robust estimators and deep learning-based correspondence filtering methods, establishing the current state-of- the-art in robust homography estimation. We also evalu- ate the uncertainty of the SIFT orientations and scales w.r.t. the ground truth coming from the underlying homographies and provide codes for comparing uncertainty of custom de- tectors. The dataset is available at https://github.com/danini/homography-benchmark.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
979-8-3503-0129-8
ISSN
1063-6919
e-ISSN
2575-7075
Number of pages
11
Pages from-to
21360-21370
Publisher name
IEEE Computer Society
Place of publication
USA
Event location
Vancouver
Event date
Jun 18, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001062531305067