Data-driven Single Machine Scheduling Minimizing Weighted Number of Tardy Jobs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00370778" target="_blank" >RIV/68407700:21230/23:00370778 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/23:00370778
Result on the web
<a href="https://doi.org/10.1007/978-3-031-49008-8_38" target="_blank" >https://doi.org/10.1007/978-3-031-49008-8_38</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-49008-8_38" target="_blank" >10.1007/978-3-031-49008-8_38</a>
Alternative languages
Result language
angličtina
Original language name
Data-driven Single Machine Scheduling Minimizing Weighted Number of Tardy Jobs
Original language description
We tackle a single-machine scheduling problem where each job is characterized by weight, duration, due date, and deadline, while the objective is to minimize the weighted number of tardy jobs. The problem is strongly NP-hard and has practical applications in various domains, such as customer service and production planning. The best known exact approach uses a branch-and-bound structure, but its efficiency varies depending on the distribution of job parameters. To address this, we propose a new data-driven heuristic algorithm that considers the parameter distribution and uses machine learning and integer linear programming to improve the optimality gap. The algorithm also guarantees to obtain a feasible solution if it exists. Experimental results show that the proposed approach outperforms the current state-of-the-art heuristic. 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Progress in Artificial Intelligence, 22nd EPIA Conference on Artificial Intelligence, EPIA 2023, Faial Island, Azores, September 5–8, 2023, Proceedings, Part I
ISBN
978-3-031-49007-1
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
12
Pages from-to
483-494
Publisher name
Springer, Cham
Place of publication
—
Event location
Faial Island
Event date
Sep 5, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—