All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Data-driven Single Machine Scheduling Minimizing Weighted Number of Tardy Jobs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00370778" target="_blank" >RIV/68407700:21230/23:00370778 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/23:00370778

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-49008-8_38" target="_blank" >https://doi.org/10.1007/978-3-031-49008-8_38</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-49008-8_38" target="_blank" >10.1007/978-3-031-49008-8_38</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Data-driven Single Machine Scheduling Minimizing Weighted Number of Tardy Jobs

  • Original language description

    We tackle a single-machine scheduling problem where each job is characterized by weight, duration, due date, and deadline, while the objective is to minimize the weighted number of tardy jobs. The problem is strongly NP-hard and has practical applications in various domains, such as customer service and production planning. The best known exact approach uses a branch-and-bound structure, but its efficiency varies depending on the distribution of job parameters. To address this, we propose a new data-driven heuristic algorithm that considers the parameter distribution and uses machine learning and integer linear programming to improve the optimality gap. The algorithm also guarantees to obtain a feasible solution if it exists. Experimental results show that the proposed approach outperforms the current state-of-the-art heuristic. 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Progress in Artificial Intelligence, 22nd EPIA Conference on Artificial Intelligence, EPIA 2023, Faial Island, Azores, September 5–8, 2023, Proceedings, Part I

  • ISBN

    978-3-031-49007-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    12

  • Pages from-to

    483-494

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Faial Island

  • Event date

    Sep 5, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article