All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00371012" target="_blank" >RIV/68407700:21230/23:00371012 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21730/23:00371012

  • Result on the web

    <a href="https://proceedings.neurips.cc/paper_files/paper/2023/file/9e30acdeff572463c1db9b7de59de64c-Paper-Conference.pdf" target="_blank" >https://proceedings.neurips.cc/paper_files/paper/2023/file/9e30acdeff572463c1db9b7de59de64c-Paper-Conference.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.48550/arXiv.2401.09413" target="_blank" >10.48550/arXiv.2401.09413</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images

  • Original language description

    We describe an approach to predict open-vocabulary 3D semantic voxel occupancy map from input 2D images with the objective of enabling 3D grounding, segmentation and retrieval of free-form language queries. This is a challenging problem because of the 2D-3D ambiguity and the open-vocabulary nature of the target tasks, where obtaining annotated training data in 3D is difficult. The con- tributions of this work are three-fold. First, we design a new model architecture for open-vocabulary 3D semantic occupancy prediction. The architecture consists of a 2D-3D encoder together with occupancy prediction and 3D-language heads. The output is a dense voxel map of 3D grounded language embeddings enabling a range of open-vocabulary tasks. Second, we develop a tri-modal self-supervised learning algorithm that leverages three modalities: (i) images, (ii) language and (iii) LiDAR point clouds, and enables training the proposed architecture using a strong pre-trained vision-language model without the need for any 3D manual language annotations. Finally, we demonstrate quantitatively the strengths of the proposed model on several open-vocabulary tasks: Zero-shot 3D semantic segmentation using existing datasets; 3D grounding and retrieval of free-form language queries, using a small dataset that we propose as an extension of nuScenes.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Neural Information Processing Systems 36 (NeurIPS 2023)

  • ISBN

  • ISSN

    1049-5258

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    50545-50557

  • Publisher name

    Neural Information Processing Society

  • Place of publication

    Montreal

  • Event location

    New Orleans

  • Event date

    Dec 10, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001227224008029