Graph-based LiDAR-Inertial SLAM Enhanced by Loosely-Coupled Visual Odometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00372387" target="_blank" >RIV/68407700:21230/23:00372387 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/ECMR59166.2023.10256360" target="_blank" >https://doi.org/10.1109/ECMR59166.2023.10256360</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ECMR59166.2023.10256360" target="_blank" >10.1109/ECMR59166.2023.10256360</a>
Alternative languages
Result language
angličtina
Original language name
Graph-based LiDAR-Inertial SLAM Enhanced by Loosely-Coupled Visual Odometry
Original language description
In this paper, we address robot localization using Simultaneous Localization and Mapping (SLAM) with Light Detection and Ranging (LiDAR) perception enhanced by visual odometry in scenarios where laser scan matching can be ambiguous because of a lack of sufficient features in the scan. We propose a Graph-based SLAM approach that benefits from fusing data from multiple types of sensors to overcome the disadvantages of using only LiDAR data for localization. The proposed method uses a failure detection model based on the quality of the LiDAR scan matching and inertial measurement unit data. The failure model improves LiDAR-based localization by an additional localization source, including low-cost blackbox visual odometers like the Intel RealSense T265. The proposed method is compared to the state-of-the-art localization system LIO-SAM in cluttered and open urban areas. Based on the performed experimental deployments, the proposed failure detection model with black-box visual odometry sensor yields improved localization performance measured by the absolute trajectory and relative pose error indicators.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-05762S" target="_blank" >GA22-05762S: Towards Optimal Solution of Robotic Routing Problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of 11th European Conference on Mobile Robots
ISBN
979-8-3503-0704-7
ISSN
2639-7919
e-ISSN
—
Number of pages
8
Pages from-to
278-285
Publisher name
Institute of Electrical and Electronics Engineers
Place of publication
Brighton
Event location
Coimbra
Event date
Sep 4, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001082260500041