A Symmetric-Difference-Closed Orthomodular Lattice That Is Stateless
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00373296" target="_blank" >RIV/68407700:21230/23:00373296 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11083-022-09621-7" target="_blank" >https://doi.org/10.1007/s11083-022-09621-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11083-022-09621-7" target="_blank" >10.1007/s11083-022-09621-7</a>
Alternative languages
Result language
angličtina
Original language name
A Symmetric-Difference-Closed Orthomodular Lattice That Is Stateless
Original language description
This paper carries on the investigation of the orthomodular lattices that are endowed with a symmetric difference. Let us call them ODLs. Note that the ODLs may have a certain bearing on "quantum logics" - the ODLs are close to Boolean algebras though they capture the phenomenon of non-compatibility. The initial question in studying the state space of the ODLs is whether the state space can be poor. This question is of a purely combinatorial nature. In this note, we exhibit a finite ODL whose state space is empty (respectively, whose state space is a singleton).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS
ISSN
0167-8094
e-ISSN
1572-9273
Volume of the periodical
40
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
397-402
UT code for WoS article
000887891700001
EID of the result in the Scopus database
2-s2.0-85142451267