Graph Neural Network Empowered Resource Allocation for Connected Autonomous Mobility
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00373613" target="_blank" >RIV/68407700:21230/23:00373613 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/IRC59093.2023.00049" target="_blank" >http://dx.doi.org/10.1109/IRC59093.2023.00049</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IRC59093.2023.00049" target="_blank" >10.1109/IRC59093.2023.00049</a>
Alternative languages
Result language
angličtina
Original language name
Graph Neural Network Empowered Resource Allocation for Connected Autonomous Mobility
Original language description
Autonomous mobility and computations provided for passengers impose a high hardware and energy consumption related costs when deployed locally on connected autonomous vehicle (CAV). Distribution of resources for computation accross the edge of mobile network by means of multi-access edge computing (MEC) allows to reduce the cost of the CAVs. However, the decision on computation offloading and allocation of resources for computing is itself a computationally complex task. Existing works typically do not fully exploit the potential of machine learning by combining novel advances in deep reinforcement learning (DRL) and graph neural networks (GNNs) that are suited for graph structure of the MEC. We propose a novel framework combining GNNs with deep deterministic policy gradient (DDPG) variant of DRL. The proposed concept is tested in environment with simulated gNodeBs, CAVs and execution of actions that simultaneously trade off uplink and processing resources and control the soft deadline buffer. In scenario with one base station and 12 CAVs our approach outperforms commonly used multilayer perceptron DDPG by 59% in terms of failed task ratio metric. Additionally, in scenario with 3 base stations and 25 CAVs, the proposal reaches over 33% for the same metric over round robin (RR) distribution.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20203 - Telecommunications
Result continuities
Project
<a href="/en/project/LUASK22064" target="_blank" >LUASK22064: Predictive allocation of edge computing resources for autonomous driving</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IEEE Robotic Computing (IEEE IRC 2023)
ISBN
9781665472616
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
260-264
Publisher name
IEEE
Place of publication
Irvine, CA
Event location
California
Event date
Dec 11, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001195993100043