Form of contextuality predicting probabilistic equivalence between two sets of three mutually noncommuting observables
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00372193" target="_blank" >RIV/68407700:21230/24:00372193 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1103/PhysRevA.109.022222" target="_blank" >https://doi.org/10.1103/PhysRevA.109.022222</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.109.022222" target="_blank" >10.1103/PhysRevA.109.022222</a>
Alternative languages
Result language
angličtina
Original language name
Form of contextuality predicting probabilistic equivalence between two sets of three mutually noncommuting observables
Original language description
We introduce a contextual quantum system comprising mutually complementary observables organized into two or more collections of pseudocontexts with the same probability sums of outcomes. These pseudocontexts constitute non-orthogonal bases within the Hilbert space, featuring a state-independent sum of probabilities. In other words, regardless of the initial state preparation, the total probability remains constant but may be distinct from unity. The measurement contextuality in this setup arises from the quantum realizations of the hypergraph, which adhere to a specific bound on the linear combination of probabilities. In contrast, classical realizations can surpass this bound. The violation of quantum bounds stems from the inability of classical ontological models, specifically the set theoretic representation of the hypergraph corresponding to the quantum observables’ collections, to adhere to and explain the observed statistics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
2469-9934
Volume of the periodical
109
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
—
UT code for WoS article
001172355600008
EID of the result in the Scopus database
2-s2.0-85185887198