All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Corrosion behavior of Cr coating on ferritic/martensitic steels in liquid lead-bismuth eutectic at 600 °C and 700 °C

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00372741" target="_blank" >RIV/68407700:21230/24:00372741 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jmrt.2024.02.116" target="_blank" >https://doi.org/10.1016/j.jmrt.2024.02.116</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmrt.2024.02.116" target="_blank" >10.1016/j.jmrt.2024.02.116</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Corrosion behavior of Cr coating on ferritic/martensitic steels in liquid lead-bismuth eutectic at 600 °C and 700 °C

  • Original language description

    The surface coating technology, encompassing ceramics, refractory materials, metallic alloys containing Al or Si, and multicomponent composites, presents a viable approach to improve the corrosion resistance of ferritic/martensitic (F/M) steels with (9–12) wt.% Cr in liquid lead-bismuth eutectic (LBE) environment. Among these coating materials, chromium (Cr) coating emerges as a particularly noteworthy option. This study specifically focused on depositing a 3 μm thick Cr coating on on T91 and SIMP steels using magnetron sputtering. Subsequently, the corrosion behavior of the Cr coating was investigated in LBE at temperatures of 600 °C and 700 °C. The results revealed that, after 300 h at 600 °C, T91 and SIMP steels formed oxide scales with approximately 32.6 μm and 19.3 μm thicknesses, respectively. At 700 °C for 140 h, these oxide scales increased to about 82.4 μm and 73.1 μm for T91 and SIMP steels, respectively. However, the application of a Cr coating resulted in the formation of a dense layer of chromium oxide with a thickness of 4–5 μm. This layer effectively impeded oxygen diffusion and Fe migration leading to a significant reduction in the corrosion rate of the steel. Notably, the Cr coating maintained secure attachment to the steel even after exposure to high-temperature LBE corrosion. These findings underscore the capacity of coating to markedly enhance the corrosion resistance of T91 and SIMP steels in high-temperature LBE environments, providing robust protection against the detrimental effects of challenging conditions. Consequently, Cr coating emerges as a promising solution for future fission nuclear reactors.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotics and advanced industrial production</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Materials Research and Technology

  • ISSN

    2238-7854

  • e-ISSN

    2214-0697

  • Volume of the periodical

    29

  • Issue of the periodical within the volume

    Mar-Apr

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    9

  • Pages from-to

    3958-3966

  • UT code for WoS article

    001202930500001

  • EID of the result in the Scopus database

    2-s2.0-85185556455