All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

EVALUATION OF INKJET PRINTED HEATERS ARRAY FOR CHEMO-RESISTIVE GAS SENSOR

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00374937" target="_blank" >RIV/68407700:21230/24:00374937 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.37904/nanocon.2023.4770" target="_blank" >https://doi.org/10.37904/nanocon.2023.4770</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37904/nanocon.2023.4770" target="_blank" >10.37904/nanocon.2023.4770</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    EVALUATION OF INKJET PRINTED HEATERS ARRAY FOR CHEMO-RESISTIVE GAS SENSOR

  • Original language description

    Heaters are an indispensable part of gas sensing platforms. It serves to heat the sensor, which increases the sensitivity of the active layer and helps in the desorption of the detected gas. The sensors are also heated to stabilize the parameters against the ambient temperature. For the fabrication of electronic circuits and devices including sensing platforms and heating structures is becoming increasingly popular to use flexible electronics. In particular, the use of inkjet printing technology allowing localized deposition of ink at low temperatures on a large area. Many kinds of inks such as conductive, semi-conductive, or dielectric can be used. In this research, we present the design preparation, simulation, fabrication, and characterization of the inkjet printed heaters. The structures are based on silver nanoparticle ink printed on a flexible substrate and are sintered with intense pulsed light. The printed heaters consist of connection pads, interconnection pathways, and heater patterns. Two types of heater patterns were designed (meander and dual-spiral type). Both of the prepared patterns were simulated in Ansys simulation software to obtain the heat distribution. The microheaters were printed on a polyethylene terephthalate (PET) substrate and characterized with a thermal imaging camera. Based on the results obtained from these measurements, a calibration plot was created.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/GA22-04533S" target="_blank" >GA22-04533S: Printed heterogeneous gas sensor arrays with enhanced sensitivity and selectivity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2023 Conference Proceedings

  • ISBN

    978-80-88365-15-0

  • ISSN

    2694-930X

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    52-57

  • Publisher name

    TANGER

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Oct 18, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001234125400008