All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

State-of-Charge Estimation Based on Open-Circuit Voltage Model Considering Hysteresis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376481" target="_blank" >RIV/68407700:21230/24:00376481 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ISSE61612.2024.10603756" target="_blank" >https://doi.org/10.1109/ISSE61612.2024.10603756</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISSE61612.2024.10603756" target="_blank" >10.1109/ISSE61612.2024.10603756</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    State-of-Charge Estimation Based on Open-Circuit Voltage Model Considering Hysteresis

  • Original language description

    Lithium-ion batteries (LIBs) play a pivotal role in various sectors such as transportation, aerospace, and stationary systems. Accurate estimation of their state-of-charge (SOC) is crucial for efficient utilization within battery management systems. This work presents an enhanced SOC estimation method for LIBs, leveraging both open-circuit voltage (OCV) and hysteresis models. A co-estimation architecture employing two estimators is proposed, firstly focusing on battery model parameter estimation, and secondly utilizing pseudo-OCV instead of voltage measurements as output. This modification offers enhanced accuracy, reduced reliance on extensive laboratory testing, and improved robustness, especially in applications with rapid temperature fluctuations. The proposed method is evaluated through dynamic discharge profile tests across temperature levels ranging from 5 to 45 °C. Root-mean-square errors of SOC estimation for various temperatures were improved from the baseline approach (0.0185-0.0420) down to 0.0090-0.0280 in the proposed approach, showcasing the effectiveness of incorporating hysteresis models into SOC estimation.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2024 47th International Spring Seminar on Electronics Technology (ISSE)

  • ISBN

    979-8-3503-8548-9

  • ISSN

    2161-2536

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

  • Publisher name

    IEEE Press

  • Place of publication

    New York

  • Event location

    Praha

  • Event date

    May 15, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001283808200033