First-principles guidelines to select promising van der Waals materials for hybrid photovoltaic-triboelectric nanogenerators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376578" target="_blank" >RIV/68407700:21230/24:00376578 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1039/d4nr02217c" target="_blank" >https://doi.org/10.1039/d4nr02217c</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d4nr02217c" target="_blank" >10.1039/d4nr02217c</a>
Alternative languages
Result language
angličtina
Original language name
First-principles guidelines to select promising van der Waals materials for hybrid photovoltaic-triboelectric nanogenerators
Original language description
Photovoltaic (PV) devices play a key role in solar-to-electricity energy conversion at small and large scales; unfortunately, their efficiency heavily depends on optimal weather and environmental conditions. The optimal scenario would be to extend the capabilities of PV devices so that they are also able to harvest energy from environmental sources other than light. An optimal solution is represented by hybrid photovoltaic-triboelectric (PV-TENG) devices which have both photovoltaic and triboelectric capabilities for electric power generation. Two-dimensional transition metal dichalcogenides (TMDs) are highly promising candidates for such PV-TENG devices, thanks to the easy tunability of their electrical, optical, mechanical, and chemical properties. In this respect, we here propose a quantum mechanical study to identify suitable TMD-based chemical compositions with optimal photovoltaic and triboelectric generation properties. Among the considered materials, we identify MoTe2/WS2, MoS2/WSe2, WS2/TiO2, WS2/IrO2, and MoS2/WTe2 as the most promising bilayer compositions; under operative conditions, the band gap varies in the range 0.51-1.61 eV, ensuring the photovoltaic activity, while the relative motion of the layers may produce an electromotive force between 1.21 and 3.21 V (triboelectric generation) with a TMD/TMD interface area equal to about 200 & Aring;2. The results constitute theoretical guidelines on how to check if specific chemical compositions of TMD bilayers are optimal for a combined photovoltaic and triboelectric power generation. Thanks to its generality, the presented approach can be promptly extended to van der Waals heterostructures other than those here considered and implemented in automated workflows for the search of novel low-dimensional materials with target PV and TENG response. Hybrid photovoltaic-triboelectric nanogenerator (PV-TENG) devices are promising multi-energy harvesters. We provide theoretical guidelines to identify TMD chemical compositions for optimal PV-TENG electric power generation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nanoscale
ISSN
2040-3364
e-ISSN
2040-3372
Volume of the periodical
16
Issue of the periodical within the volume
35
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
16582-16592
UT code for WoS article
001293123300001
EID of the result in the Scopus database
2-s2.0-85201908827