Single Image Test-Time Adaptation for Segmentation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376885" target="_blank" >RIV/68407700:21230/24:00376885 - isvavai.cz</a>
Result on the web
<a href="https://openreview.net/forum?id=68LsWm2GuD" target="_blank" >https://openreview.net/forum?id=68LsWm2GuD</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Single Image Test-Time Adaptation for Segmentation
Original language description
Test-Time Adaptation methods improve domain shift robustness of deep neural networks. We explore the adaptation of segmentation models to a single unlabelled image with no other data available at test time. This allows individual sample performance analysis while excluding orthogonal factors such as weight restart strategies. We propose two new segmentation ac{tta} methods and compare them to established baselines and recent state-of-the-art. The methods are first validated on synthetic domain shifts and then tested on real-world datasets. The analysis highlights that simple modifications such as the choice of the loss function can greatly improve the performance of standard baselines and that different methods and hyper-parameters are optimal for different kinds of domain shift, hindering the development of fully general methods applicable in situations where no prior knowledge about the domain shift is assumed.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Transactions on Machine Learning Research
ISSN
2835-8856
e-ISSN
2835-8856
Volume of the periodical
2024
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
20
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85219561515