All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards Safe Mid-Air Drone Interception: Strategies for Tracking & Capture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376946" target="_blank" >RIV/68407700:21230/24:00376946 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/LRA.2024.3451768" target="_blank" >https://doi.org/10.1109/LRA.2024.3451768</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LRA.2024.3451768" target="_blank" >10.1109/LRA.2024.3451768</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards Safe Mid-Air Drone Interception: Strategies for Tracking & Capture

  • Original language description

    A unique approach for mid-air autonomous aerial interception of non-cooperating Uncrewed Aerial Vehicles (UAVs) by a flying robot equipped with a net is presented in this paper. A novel interception guidance method called Fast Response Proportional Navigation (FRPN) is proposed, designed to catch agile maneuvering targets while relying on onboard state estimation and tracking. The proposed method is compared with state-of-the-art approaches in simulations using different target trajectories of varying complexity, comprising a large amount of flight data. FRPN demonstrates the shortest response time and the highest number of interceptions, which are key parameters for agile interception. To ensure a robust transition from theory and simulation to real-world implementation, the approach avoids overfitting to specific assumptions about the target and aims to intercept a target following an unknown, general trajectory. Furthermore, the paper identifies several often overlooked problems related to tracking and estimating the target's state that can significantly affect the overall performance of the system. It proposes a novel state estimation filter based on the Interacting Multiple Model (IMM) filter and a new measurement model. Simulated experiments show that the proposed solution significantly improves estimation accuracy over commonly employed Kalman Filter approaches when dealing with general trajectories. Based on these results, the proposed filtering and guidance methods are used to implement a complete autonomous interception system, which is thoroughly evaluated in realistic simulations and tested in real-world experiments with a maneuvering target, surpassing the performance of any state-of-the-art solution.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Robotics and Automation Letters

  • ISSN

    2377-3766

  • e-ISSN

    2377-3766

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    8810-8817

  • UT code for WoS article

    001311225900002

  • EID of the result in the Scopus database

    2-s2.0-85202723442