All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Autonomous localization of multiple ionizing radiation sources using miniature single-layer Compton cameras onboard a group of micro aerial vehicles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377180" target="_blank" >RIV/68407700:21230/24:00377180 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/IROS58592.2024.10802808" target="_blank" >https://doi.org/10.1109/IROS58592.2024.10802808</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IROS58592.2024.10802808" target="_blank" >10.1109/IROS58592.2024.10802808</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Autonomous localization of multiple ionizing radiation sources using miniature single-layer Compton cameras onboard a group of micro aerial vehicles

  • Original language description

    A novel method for autonomous localization of multiple sources of gamma radiation using a group of Micro Aerial Vehicles (MAVs) is presented in this paper. The method utilizes an extremely lightweight (44 g) Compton camera Minipix Timepix3. The compact size of the detector allows for deployment onboard safe and agile small-scale UAVs. The proposed radiation mapping approach fuses measurements from multiple distributed Compton camera sensors to accurately estimate the positions of multiple radioactive sources in real time. Unlike commonly used intensity-based detectors, the Compton camera reconstructs the set of possible directions towards a radiation source from just a single ionizing particle. Therefore, the proposed approach can localize radiation sources without having to estimate the gradient of a radiation field or contour lines, which require longer measurements. The instant estimation is able to fully exploit the potential of highly mobile MAVs. The radiation mapping method is combined with an active search strategy, which coordinates the future actions of the MAVs in order to improve the quality of the estimate of the sources' positions, as well as to explore the area of interest faster. The proposed solution is evaluated in simulation and real-world experiments with multiple Cesium-137 radiation sources.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)

  • ISBN

    979-8-3503-7770-5

  • ISSN

    2153-0858

  • e-ISSN

    2153-0866

  • Number of pages

    8

  • Pages from-to

    5710-5717

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Abu Dhabi

  • Event date

    Oct 14, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001411890000581