Learning not to regret
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00378617" target="_blank" >RIV/68407700:21230/24:00378617 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/24:10490822
Result on the web
<a href="https://doi.org/10.1609/aaai.v38i14.29443" target="_blank" >https://doi.org/10.1609/aaai.v38i14.29443</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v38i14.29443" target="_blank" >10.1609/aaai.v38i14.29443</a>
Alternative languages
Result language
angličtina
Original language name
Learning not to regret
Original language description
The literature on game-theoretic equilibrium finding predominantly focuses on single games or their repeated play. Nevertheless, numerous real-world scenarios feature playing a game sampled from a distribution of similar, but not identical games, such as playing poker with different public cards or trading correlated assets on the stock market. As these similar games feature similar equilibra, we investigate a way to accelerate equilibrium finding on such a distribution. We present a novel "learning not to regret" framework, enabling us to meta-learn a regret minimizer tailored to a specific distribution. Our key contribution, Neural Predictive Regret Matching, is uniquely meta-learned to converge rapidly for the chosen distribution of games, while having regret minimization guarantees on any game. We validated our algorithms' faster convergence on a distribution of river poker games. Our experiments show that the meta-learned algorithms outpace their non-meta-learned counterparts, achieving more than tenfold improvements.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-26655S" target="_blank" >GA22-26655S: Algorithms for Playing Massive Imperfect-Information Games</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 38th AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-887-9
ISSN
2159-5399
e-ISSN
2374-3468
Number of pages
9
Pages from-to
15202-15210
Publisher name
AAAI Press
Place of publication
Menlo Park
Event location
Vancouver
Event date
Feb 20, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001239983500003