All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Composed Image Retrieval for Remote Sensing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00379044" target="_blank" >RIV/68407700:21230/24:00379044 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/IGARSS53475.2024.10642874" target="_blank" >https://doi.org/10.1109/IGARSS53475.2024.10642874</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IGARSS53475.2024.10642874" target="_blank" >10.1109/IGARSS53475.2024.10642874</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Composed Image Retrieval for Remote Sensing

  • Original language description

    This work introduces composed image retrieval to remote sensing. It allows to query a large image archive by image examples alternated by a textual description, enriching the descriptive power over unimodal queries, either visual or textual. Various attributes can be modified by the textual part, such as shape, color, or context. A novel method fusing image-to-image and text-to-image similarity is introduced. We demonstrate that a vision-language model possesses sufficient descriptive power and no further learning step or training data are necessary. We present a new evaluation benchmark focused on color, context, density, existence, quantity, and shape modifications. Our work not only sets the state-of-the-art for this task, but also serves as a foundational step in addressing a gap in the field of remote sensing image retrieval. Code at: https://github.com/billpsomas/rscir.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GM21-28830M" target="_blank" >GM21-28830M: Learning Universal Visual Representation with Limited Supervision</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium Proceedings

  • ISBN

    979-8-3503-6033-2

  • ISSN

    2153-6996

  • e-ISSN

    2153-7003

  • Number of pages

    9

  • Pages from-to

    8526-8534

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Athens

  • Event date

    Jul 7, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001415226903077