All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimizing Prediction Time and Accuracy of Users' Regular/Irregular Grouping Using ML Classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00379519" target="_blank" >RIV/68407700:21230/24:00379519 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/VTC2024-Fall63153.2024.10757811" target="_blank" >https://doi.org/10.1109/VTC2024-Fall63153.2024.10757811</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/VTC2024-Fall63153.2024.10757811" target="_blank" >10.1109/VTC2024-Fall63153.2024.10757811</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimizing Prediction Time and Accuracy of Users' Regular/Irregular Grouping Using ML Classification

  • Original language description

    Utilization of Artificial Intelligence in mobile networks has seen significant growth in the last decade. It spans from mobile phone applications to various aspects of mobile network operations, including planning and optimization. Understanding and modeling users' mobility patterns enhance mobility-based operations such as handover, scheduling, paging, and caching. In the literature, numerous models exist for grouping users' mobility patterns in mobile networks based on their regularity. In our paper, we employ machine learning techniques to achieve this task, prioritizing low prediction time and high accuracy.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    100th IEEE Vehicular Technology Conference, VTC 2024-Fall

  • ISBN

    9798331517786

  • ISSN

    1550-2252

  • e-ISSN

    1550-2252

  • Number of pages

    5

  • Pages from-to

    1-5

  • Publisher name

    Institute of Electrical and Electronics Engineers

  • Place of publication

  • Event location

    Washington

  • Event date

    Oct 7, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article