Linear Maps Preserving Function Calculus and Entropies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00381383" target="_blank" >RIV/68407700:21230/24:00381383 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1134/S1995080224603291" target="_blank" >https://doi.org/10.1134/S1995080224603291</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S1995080224603291" target="_blank" >10.1134/S1995080224603291</a>
Alternative languages
Result language
angličtina
Original language name
Linear Maps Preserving Function Calculus and Entropies
Original language description
We show that a unital map between Jordan–Banach algebras or Banach algebras that preserves function calculus given by a single nontrivial locally analytic function must be a Jordan morphism. Ramifications of this results are presented. As an application we prove that quantum channel on general Jordan -algebras preserving Segal and Renyi entropy must be a Jordan homomorphism.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA23-04776S" target="_blank" >GA23-04776S: Interplay of algebraic, metric, geometric and topological structures on Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lobachevskii Journal of Mathematics
ISSN
1995-0802
e-ISSN
1818-9962
Volume of the periodical
45
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
2502-2508
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85205976919