Using Finite Automata Approach for Searching Approximate Seeds of Strings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F10%3A00170021" target="_blank" >RIV/68407700:21240/10:00170021 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-90-481-3517-2_27" target="_blank" >http://dx.doi.org/10.1007/978-90-481-3517-2_27</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Using Finite Automata Approach for Searching Approximate Seeds of Strings
Original language description
Seed is a type of a regularity of strings. A restricted approximate seed w of string T is a factor of T such that w covers a superstring of T under some distance rule. In this paper, the problem of searching of all restricted seeds with the smallest Hamming distance is studied and a polynomial time and space algorithm for solving the problem is presented. It searches for all restricted approximate seeds of a string with given limited approximation using Hamming distance and it computes the smallest distance for each found seed. The solution is based on a finite (suffix) automata approach that provides a straightforward way to design algorithms to many problems in stringology. Therefore, it is shown that the set of problems solvable using finite automata includes the one studied in this paper.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0807" target="_blank" >GA201/09/0807: String and tree analysis and processing</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Intelligent Automation and Computer Engineering
ISBN
978-90-481-3516-5
Number of pages of the result
14
Pages from-to
347-360
Number of pages of the book
501
Publisher name
Springer
Place of publication
New York
UT code for WoS chapter
—