Personalised Access to Linked Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F14%3A00221725" target="_blank" >RIV/68407700:21240/14:00221725 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007/978-3-319-13704-9_10" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-13704-9_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-13704-9_10" target="_blank" >10.1007/978-3-319-13704-9_10</a>
Alternative languages
Result language
angličtina
Original language name
Personalised Access to Linked Data
Original language description
Recent efforts in the Semantic Web community have been primarily focused on developing technical infrastructure and technologies for efficient Linked Data acquisition, publishing and interlinking. Nevertheless, due to the huge and diverse amount of information, the actual access to a piece of information in the LOD cloud still demands significant amount of effort. In this paper, we present a novel configurable method for personalised access to Linked Data. The method recommends resources of interest from users with similar tastes. To measure the similarity between the users we introduce a novel resource semantic similarity metric, which takes into account the commonalities and informativeness of the resources. We validate and evaluate the method on a real-world dataset from the Web services domain. The results show that our method outperforms the other baseline methods in terms of accuracy, serendipity and diversity.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Knowledge Engineering and Knowledge Management
ISBN
978-3-319-13703-2
ISSN
0302-9743
e-ISSN
—
Number of pages
16
Pages from-to
121-136
Publisher name
Springer International Publishing AG
Place of publication
Cham
Event location
Linköping
Event date
Nov 24, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000354879800010