All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multimodal Fusion: Combining Visual and Textual Cues for Concept Detection in Video

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F15%3A00224288" target="_blank" >RIV/68407700:21240/15:00224288 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-319-14998-1_13" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-14998-1_13</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-14998-1_13" target="_blank" >10.1007/978-3-319-14998-1_13</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multimodal Fusion: Combining Visual and Textual Cues for Concept Detection in Video

  • Original language description

    Visual concept detection is one of the most active research areas in multimedia analysis. The goal of visual concept detection is to assign to each elementary temporal segment of a video, a confidence score for each target concept (e.g. forest, ocean, sky, etc.). The establishment of such associations between the video content and the concept labels is a key step toward semantics-based indexing, retrieval, and summarization of videos, as well as deeper analysis (e.g., video event detection). Due to itssignificance for the multimedia analysis community, concept detection is the topic of international benchmarking activities such as TRECVID. While video is typically a multi-modal signal composed of visual content, speech, audio, and possibly also subtitles, most research has so far focused on exploiting the visual modality. In this chapter we introduce fusion and text analysis techniques for harnessing automatic speech recognition (ASR) transcripts or subtitles for improving the results

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Multimedia Data Mining and Analytics

  • ISBN

    978-3-319-14997-4

  • Number of pages of the result

    16

  • Pages from-to

    295-310

  • Number of pages of the book

    454

  • Publisher name

    Springer International Publishing AG

  • Place of publication

    Cham

  • UT code for WoS chapter