Extending the Kernel for Planar Steiner Tree to the Number of Steiner Vertices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F15%3A00237607" target="_blank" >RIV/68407700:21240/15:00237607 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.151" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.151</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.151" target="_blank" >10.4230/LIPIcs.IPEC.2015.151</a>
Alternative languages
Result language
angličtina
Original language name
Extending the Kernel for Planar Steiner Tree to the Number of Steiner Vertices
Original language description
In the textsc{Steiner Tree} problem one is given an undirected graph, a subset~$T$ of its vertices, and an integer~$k$ and the question is whether there is a connected subgraph of the given graph containing all the vertices of~$T$ and at most~$k$ other vertices. The vertices in the subset~$T$ are called terminals and the other vertices are called Steiner vertices. Recently, Pilipczuk, Pilipczuk, Sankowski, and van Leeuwen [FOCS 2014] gave a polynomial kernel for textsc{Steiner Tree} in planar graphs, when parameterized by $|T|+k$, the total number of vertices in the constructed subgraph. In this paper we present several polynomial time applicable reduction rules for textsc{Planar Steiner Tree}. In an instance reduced with respect to the presented reduction rules, the number of terminals~$|T|$ is at most quadratic in the number of other vertices~$k$ in the subgraph. Hence, using and improving the result of Pilipczuk et al., we give a polynomial kernel for textsc{Steiner Tree} in planar
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP14-13017P" target="_blank" >GP14-13017P: Parameterized Algorithms for Fundamental Network Problems Related to Connectivity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
10th International Symposium on Parameterized and Exact Computation (IPEC 2015)
ISBN
978-3-939897-92-7
ISSN
1868-8969
e-ISSN
—
Number of pages
12
Pages from-to
151-162
Publisher name
Dagstuhl Publishing,
Place of publication
Saarbrücken
Event location
Patras, Greece
Event date
Sep 16, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—