All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Extending the Kernel for Planar Steiner Tree to the Number of Steiner Vertices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F15%3A00237607" target="_blank" >RIV/68407700:21240/15:00237607 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.151" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.151</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.151" target="_blank" >10.4230/LIPIcs.IPEC.2015.151</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Extending the Kernel for Planar Steiner Tree to the Number of Steiner Vertices

  • Original language description

    In the textsc{Steiner Tree} problem one is given an undirected graph, a subset~$T$ of its vertices, and an integer~$k$ and the question is whether there is a connected subgraph of the given graph containing all the vertices of~$T$ and at most~$k$ other vertices. The vertices in the subset~$T$ are called terminals and the other vertices are called Steiner vertices. Recently, Pilipczuk, Pilipczuk, Sankowski, and van Leeuwen [FOCS 2014] gave a polynomial kernel for textsc{Steiner Tree} in planar graphs, when parameterized by $|T|+k$, the total number of vertices in the constructed subgraph. In this paper we present several polynomial time applicable reduction rules for textsc{Planar Steiner Tree}. In an instance reduced with respect to the presented reduction rules, the number of terminals~$|T|$ is at most quadratic in the number of other vertices~$k$ in the subgraph. Hence, using and improving the result of Pilipczuk et al., we give a polynomial kernel for textsc{Steiner Tree} in planar

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GP14-13017P" target="_blank" >GP14-13017P: Parameterized Algorithms for Fundamental Network Problems Related to Connectivity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    10th International Symposium on Parameterized and Exact Computation (IPEC 2015)

  • ISBN

    978-3-939897-92-7

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    151-162

  • Publisher name

    Dagstuhl Publishing,

  • Place of publication

    Saarbrücken

  • Event location

    Patras, Greece

  • Event date

    Sep 16, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article