Approximate String Matching for Self-Indexes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F16%3A00241716" target="_blank" >RIV/68407700:21240/16:00241716 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Approximate String Matching for Self-Indexes
Original language description
Self-index is a data structure that allows to find all exact occurrences of given pattern of length $m$ in $m$ steps. The paper presents an approach how to use self-index for approximate string matching with no more than $k$~differences (given by Hamming or Levenshtein distance). Our approach solution uses filtering based on the pigeonhole principle. For implementation we have selected FM-index. Our program is faster than BLAST for large texts (hundreds of MB) and more space efficient for shorter texts.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-03253S" target="_blank" >GA13-03253S: Text and Tree Structures Processing and Their Applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Data Compression Conference 2016
ISBN
978-1-5090-1853-6
ISSN
1068-0314
e-ISSN
—
Number of pages
1
Pages from-to
604-604
Publisher name
IEEE Computer Society Press
Place of publication
New York
Event location
Snowbird
Event date
Mar 29, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000391353800083